US009400683B2

a2 United States Patent 10) Patent No.: US 9,400,683 B2
Sreedharan (45) Date of Patent: Jul. 26, 2016
(54) OPTIMIZING EXECUTION OF PROCESSES 2011/0088021 Al* 4/2011 Kruglick GOG6F 8/443
717/149
(71) Applicant: Unmesh Sreedharan, Kottayam (IN) 2011/0289519 AL* L2011 FrOSt oo G06F7?/95/g%
2011/0314256 Al* 12/2011 Callahan, II GOGF 8/45
(72) Inventor: Unmesh Sreedharan, Kottayam (IN) 712/17
2011/0314444 Al* 12/2011 Zhang ..o GOGF 8/45
: . 717/106
(73) Assignee: SAP SE, Walldorf (DE) 2012/0254888 Al* 102012 Kalogeropulos ... GOGF 8/452
718/107
(*) Notice: Subject to any disclaimer, the term of this 2013/0024871 Al* 12013 Gao et ale woeoooooirn, 718/105
patent is extended or adjusted under 35 2013/0080339 Al* 3/2013 Driesen et al. 705/301
U.S.C. 154(b) by 41 days. 2013/0086564 Al* 4/2013 Felch ..cooooeornorrnnee.. GOGF 8/41
717/145
2013/0138473 Al* 5/2013 Balkoetal. ... 705/7.27
(21) Appl. No.: 14/515,520 2014/0089530 AL* 32014 Ji wooooe GOGF 3/0659
710/6
(22) Filed: Oct. 16, 2014 2014/0101641 Al* 4/2014 Staplesetal. 717/130
2015/0169706 Al* 6/2015 Sreedharanetal. 718/105
N :
(65) Prior Publication Data 2016/0LI0176 AL® 42016 Fink oo G067F 15;%47‘
US 2016/0110217 Al Apr. 21, 2016 OTHER PUBLICATIONS
(51) Int.CL Pusukuri et al., “Thread reinforcer: Dynamically determining num-
GOGF 9/44 (2006.01) ber of threads via OS level monitoring”, IEEE, Nov. 2011, pp. 116-
GO6F 9/45 (2006.01) 125; <http://ieecexplore.ieee.org/stamp/stamp.jsp?tp=
GO6F 9/48 (200601) &arnumber=6114208>.*
(52) U.S.CL (Continued)
CPC ... GO6F 9/4881 (2013.01); GO6F 8/314
(2013.01); GOGF 8/45 (2013.01); GOGF 8/10 Primary Examiner — Thuy Dao
(2013.01); GOGF 8/456 (2013.01) Assistant Examiner — Ben C Wang
(58) Field of Classification Search
CPC oo GOGF 8/10; GOGF 8/45: GOGF 8/314; ©7) ABSTRACT
GO6F 8/456; GOG6F 9/506 Methods and system for optimizing an execution of a busi-
See application file for complete search history. ness process are disclosed. In one aspect, a request to execute
a business process is received. The business process is
(56) References Cited executed on multiple threads, which may include multiple

U.S. PATENT DOCUMENTS

computations. The business process is optimized by deter-
mining an optimal number of threads for executing the busi-
ness process by a thread optimization model. From the deter-

2005/0165822 Al* 7/2005 Yeungetal. 707/102 mined optimal number of threads, the computations in the
2007/0038987 Al* 2/2007 Ohara GOGF 8/45 threads may be distributed or reallocated iteratively by
2008/0033900 AL* 22008 Zh cal 7 %(7)/6 l/g é executing an inter-thread computations optimization model.
angetal. L . 3
5009/0216863 Al* 82009 Gebhatt et al. ... 709/220 Executing the thread optimization model and the inter-thread

2010/0185719 Al*

7/2010 Howardcccce.... GO6F 8/45

computations optimization model optimizes the execution of

709/201 the business process.
2011/0078426 Al* 3/2011 Stoitsev GOGF 8/10
712/244 17 Claims, 9 Drawing Sheets
r 200
/210

RECEIVE A REQUEST TO EXECUTE A BUSINESS
PROCESS

220
r

DETERMINE AN OPTIMAL NUMBER QF THREADS FOR
EXECUTING THE BUSINESS PROCESS BY EXECUTING A
THREAD OPTIMIZATION MODEL.

230
r

ITERATIVELY DISTRIBUTE COMPUTATIONS IN THE
DETERMINED OPTIMAL NUMBER OF THREADS BY
EXECUTING AN INTER-THREAD COMPUTATIONS
OPTIMIZATION MODEL.

240
r

BASED ON THE DETERMINED OPTIMAL NUMBER OF
THREADS AND THE ITERATIVE DISTRIBUTION OF THE
COMPUTATIONS, OPTIMIZE THE EXECUTION OF THE
BUSINESS PROCESS

US 9,400,683 B2

Page 2
(56) References Cited Hlavacs et al., “Optimization for Multi-thread Data-Flow Software”,
Springer-Verlag Berlin Heidelberg, EPEW 2011, LNCS 6977, Oct.
OTHER PUBLICATIONS 2011, pp. 102-116; <http://link.springer.com/chapter/10.

1007%2F978-3-642-24749-1_ 9#page-1>.*
Magni et al., “Automatic optimization of thread-coarsening for

graphics processors”, ACM, PACT’ 14, Aug. 2014, pp. 455-466,
<http://dl.acm.org/citation.cfm?id=2628087> * * cited by examiner

US 9,400,683 B2

Sheet 1 of 9

Jul. 26, 2016

U.S. Patent

N 58300dHd Aisi

°

£ SEIDOU et

Z S8300d &

b 883008d -

dvdaHL-H3 LN

b Ol
NOLLVZINLLAO oTT TINcon
SNOILYLAdWOD [#] NOLLVZINLLLO

(v ddHL

8L WILSAS NOLLYZINLLJO SSHO0HE

- N 883204 d

%

o £ SSIO0N

g £ 85300Hd

g | SSFAD0”A

001 \

U.S. Patent Jul. 26, 2016 Sheet 2 of 9 US 9,400,683 B2

{ 200
fwg"ﬁﬁ

RECEIVE A REQUEST TO EXECUTE A BUSINESS
PROCESS

220
f,,,_

DETERMINE AN OPTIMAL NUMBER OF THREADS FOR
EXECUTING THE BUSINESS PROCESS BY EXECUTING A
THREAD OPTIMIZATION MODEL

230
f,,_.

ITERATIVELY DISTRIBUTE COMPUTATIONS IN THE
DETERMINED OPTIMAL NUMBER OF THREADS BY
EXECUTING AN INTER-THREAD COMPUTATIONS
OFTIMIZATION MODEL

240
-

BASED ON THE DETERMINED OPTIMAL NUMBER OF
THREADS AND THE ITERATIVE DISTRIBUTION OF THE
COMPUTATIONS, OPTIMIZE THE EXECUTION OF THE

BUSINESS PROCESS

FiG. 2

U.S. Patent Jul. 26, 2016 Sheet 3 of 9 US 9,400,683 B2

{ 300

310
/,-»-’

CALCULATE A TOTAL TIME REQUIRED TO EXECUTE
COMPUTATIONS ABSOCIATED WITH THE BUSINESS
PROCESS

f 320

ITERATIVELY INCREMENTING A VALUE OF A THREAD
COUNT

fav- 330

CALCULATE TOTAL TIME REQUIRED FOR EXECUTING
THE BUSINESS PROCESS AND COMPARE THE
CALCULATED TOTAL TIME AND A CORRESPONDING
VALUE OF THE THREAD COUNT FOR EACH ITERATION

f“ 340

DETERMINE THE OPTIMAL NUMBER OF THREADS FOR
EXECUTING THE BUSINESS PROCESS

U.S. Patent Jul. 26, 2016 Sheet 4 of 9 US 9,400,683 B2

{ 400

410
f“

DETERMINE A TIME REQUIRED TO CREATE A FIRST
THREAD FROM THE OPTIMAL NUMBER OF THREADS
AND ATOTAL TIME REQUHRED TO EXECUTE THE
COMPUTATIONS IN THE FIRST THREAD

420
f,w

PARTITION THE COMPUTATIONS IN THE OPTIMAL
NUMBER OF THREADS INTO TIME SLOTS

430
//ﬂ

ITERATIVELY DETERMINE AVAILABLE FREE TIME SLOTS
N THE OPTIMAL NUMBER OF THREADS BASED ON THE
TOTAL TIME REQUIRED TO EXECUTE THE
COMPUTATIONS IN A LAST THREAD

440
f«“

REALLOCATE THE COMPUTATIONS FROM THE LAST
THREAD TO THE AVAILABLE FREE TIME SLOTS INTHE
OPTIMAL NUMBER OF THREADS TO OPTIMIZE THE
EXECUTION OF THE BUSINESS PROCESS

FIG. 4

US 9,400,683 B2

Sheet 5 of 9

Jul. 26, 2016

U.S. Patent

GOl

{spucoasijiu uy
IALL g

oL 02b GiL 00L 06

[SNOLLYLNdNOD

7

0% -
| NOLLYZHD OvasHL

N

ON QvddHL

QoG \

US 9,400,683 B2

Sheet 6 of 9

Jul. 26, 2016

U.S. Patent

{SDUOOBSIHL U OcL 0ZL 0L

9Ol

L o}

SLOTS INLL J3dd 3aVTHVAY

FAYLY) SNOUYLNAWNOD
NOILLYIHD QYIuHL

009 A

ON QvZdHL

US 9,400,683 B2

Sheet 7 of 9

Jul. 26, 2016

U.S. Patent

{spLosasiiw Ul ocL ozl

CiL 03L 08 08

diNlL -

NI
SLOTS T LSO %

SL07S INIL O38YIN3Y &g

SLOTS FNLL 33U TGV IVAY D
SNOILVANGWOD 3LyD0TVEY |

04 W

e

74

01

b ﬁ

804 904

0L

ON Qv3eiHL

US 9,400,683 B2

Sheet 8 of 9

Jul. 26, 2016

U.S. Patent

{spuooasiiu U)o,

el OLL 0ol 06
gL -

=S 9EEY 9
V08—t iy =g
NSE P B
EE
15EHE

~
S1078 InL 1507 B —_—
& - RE

SLOTS INLL GISYIITY m

........ i

SLOTS INIL 3D F8VTIIVAY

SNOILY.LAdWOD aaLvo0Tvau [¢08
SNOILYLOGNOD |
NOLLYEND Ok A
S
008 -4

ﬂ

208 908

ON QV3dHL

US 9,400,683 B2

Sheet 9 of 9

Jul. 26, 2016

U.S. Patent

6 ‘Ol
IOV VIOIN FOIAZQ 1NN 3OIAZQ LOELNO
AN £ N\/W
&¥6 Sng
AAAAAAAAA N 4 4 4
§z8 gte o —
FOUNOS gy 575 556
el FOVAIILNI HOLYOINNWINOD
viva FOUNOS YLYA MHOMLIN v HOSSA00U

BEE MHOMIIN-

G086

US 9,400,683 B2

1
OPTIMIZING EXECUTION OF PROCESSES

BACKGROUND

Advancements in the field of technology have increased
the demand for systems and applications that support a
diverse set of functions in an organization. Such systems and
applications may include execution of complex algorithms
and procedures to implement processes in the organization.
The execution of algorithms and procedures to implement
processes may consume dedicated computing resources and
may add to the operational costs. Some of the processes may
not be optimized, resulting in underutilization of the comput-
ing resources. In addition, optimizing processes such that the
computing resources are effectively utilized may be challeng-
ing.

BRIEF DESCRIPTION OF THE DRAWINGS

The claims set forth the embodiments with particularity.
The embodiments are illustrated by way of examples and not
by way of limitation in the figures of the accompanying
drawings in which like references indicate similar elements.
The embodiments, together with its advantages, may be best
understood from the following detailed description taken in
conjunction with the accompanying drawings.

FIG. 1 is a block diagram illustrating process optimization
system to optimize the execution of business processes,
according to an embodiment.

FIG. 2 is a flow diagram illustrating process to optimize an
execution of a business process, according to an embodiment.

FIG. 3 is a flow diagram illustrating process to optimize an
execution of a business process, according to an embodiment.

FIG. 4 is a flow diagram illustrating process to optimize an
execution of a business process, according to an embodiment.

FIG. 5 is a block diagram illustrating an execution of a
business process, according to an embodiment.

FIG. 6 is a block diagram illustrating an execution of a
business process, according to an embodiment.

FIG. 7 is a block diagram illustrating an execution of a
business process, according to an embodiment.

FIG. 8 is a block diagram illustrating an execution of a
business process, according to an embodiment.

FIG. 9 is a block diagram of a computer system, according
to an embodiment.

DETAILED DESCRIPTION

Embodiments of techniques related to optimizing execu-
tion of processes are described herein. In the following
description, numerous specific details are set forth to provide
a thorough understanding of the embodiments. One skilled in
the relevant art will recognize, however, that the embodi-
ments can be practiced without one or more of the specific
details, or with other methods, components, materials, etc. In
other instances, well-known structures, materials, or opera-
tions are not shown or described in detail.

Reference throughout this specification to “one embodi-
ment”, “this embodiment” and similar phrases, means that a
particular feature, structure, or characteristic described in
connection with the embodiment is included in at least one of
the one or more embodiments. Thus, the appearances of these
phrases in various places throughout this specification are not
necessarily all referring to the same embodiment. Further-
more, the particular features, structures, or characteristics
may be combined in any suitable manner in one or more
embodiments.

10

15

20

25

30

35

40

45

50

55

60

65

2

Business processes may refer to a collection of related
activities or tasks. Such activities may be structured and may
be associated with a specific service or a product. A business
process may include multiple sub-processes that may be
executed to achieve a desired objective. The sub-processes or
the business process may be executed concurrently in parallel
on multiple threads.

A thread on which a business process is executed, may be
a component of the business process, and may include a
sequence of programmed instructions executed by a proces-
sor of a general purpose computer. Multiple threads may run
or execute in parallel to execute the business process and may
share computing resources such as processor, memory, etc.
Determining and allocating an optimal number of threads for
executing a business process may contribute to optimizing the
execution of the business process. Optimizing the execution
of'a business process may include modifying an aspect of the
process that makes it work more efficiently by using fewer
computing resources. By way of example, optimizing the
execution of a business process may correspond to reducing
an overall time required to execute the business process,
reducing the amount of memory consumed or utilized to
execute the business process, etc.

FIG. 1 is a block diagram 100 illustrating process optimi-
zation system 105 to optimize the execution of business pro-
cesses, according to an embodiment. By way of illustration,
FIG. 1 shows process optimization system 105 that optimizes
an execution of business processes (e.g., process 1, process 2,
process 3, process N, etc.). The process optimization system
105 includes thread optimization module 110 and inter-
thread computations optimization module 115 that may work
in conjunction with each other to optimize the execution of
the business processes (e.g., process 1, process 2, process 3,
process N, etc.).

In an embodiment, process optimization system 105 may
optimize the execution of the business process by thread
optimization module 110 and inter-thread computations opti-
mization module 115. When process optimization system 105
receives a request to execute a business process (e.g., process
1), thread optimization module 110 may determine an opti-
mal number of threads required to execute the business pro-
cess (e.g., process 1). Thread optimization module 110 may
determine attributes, structure, number of computations, etc.,
associated with the business process (e.g., process 1). The
thread optimization module 110 may iteratively calculate a
total time required to execute computations associated with
the business process (e.g., process 1) by incrementing number
of'threads (e.g., athread count) to execute the computations in
the business process (e.g., process 1). In each iteration, the
thread count may be incremented, and the total time required
to execute the computations in the business process (e.g.,
process 1) is calculated and compared with the corresponding
values (e.g., total lime required to execute the computations,
thread count, etc.) of the previous iterations. Based on the
comparison, thread optimization module 110 may determine
the optimal number of threads for executing the business
process (e.g., “process 17).

In an embodiment, upon determining the optimal number
of threads required for executing the business process (e.g.,
process 1), the execution of business process may further be
optimized by inter-thread computations optimization module
115. The inter-thread computations optimization module 115
may determine a time required to create or generate a thread
(e.g., a first thread) from the optimal number of threads and a
total time required to execute the computations in the thread
(e.g., the first thread). The computations in the optimal num-
ber of threads may be partitioned into time slots such that each

US 9,400,683 B2

3

time slot and/or computation is equal to the time required to
create the thread (e.g., the first thread).

In an embodiment, based on a determination of a total time
required to execute computations in the business process
(e.g., “process 17), inter-thread computations optimization
module 115 may iteratively determine available free time
slots in the optimal number of threads. The computations of
the last thread from the optimal number of threads may be
reallocated or distributed between the available free time slots
in the optimal number of threads. The reallocation or distri-
bution of the computations may optimize the execution of the
business process (e.g., “process 1) by reducing the memory
utilized and the total time required executing the business
process.

FIG. 2 is a flow diagram illustrating process 200 to opti-
mize an execution of a business process, according to an
embodiment. The process 200 may include receiving a
request to execute the business process. The threads may be
independent subsets of the business process and may include
instructions related to computations or calculations that are
associated with the business process. In an embodiment, a
request is received to execute a business process, at 210. The
execution of business process may be optimized by an execu-
tion of multiple optimization models. The execution of the
optimization models may be sequential and the order in
which the optimization models may be executed may depend
on the business process or may be defined by a user.

In an embodiment, the execution of the business process
may be optimized by executing a thread optimization model
and an inter-thread computations optimization model. The
thread optimization model may be executed to determine an
optimal number of threads required for executing the process,
at 220. Upon determining the optimal number of threads to
execute the process, the inter-thread computations optimiza-
tion model may be executed. The execution of inter-thread
computations optimization model iteratively distributes com-
putations in the determined optimal number of threads, at
230. The distribution or reallocation of the computations may
be based on business logic. By way of example, the business
logic may include iteratively parsing the threads to determine
whether: the computations in the threads may be reallocated;
the computations in the threads are awaiting reallocation, etc.
Based on the determined optimal number of threads and the
iterative distribution of the computations in the optimal num-
ber of threads, the execution of the business process is opti-
mized, at 240.

FIG. 3 is a flow diagram illustrating process 300 to opti-
mize an execution of a business process, according to an
embodiment. In an embodiment, a business process may be
optimized by an execution of a thread optimization model that
may determine an optimal number of threads required to
execute the business process. The execution of process 300
provides a mechanism to determine an optimal number of
threads required for an execution of the business process.

In an embodiment, the execution of the thread optimization
model may determine the attributes, structures, number of
computations, etc., associated with the business process. The
determination of the optimal number of threads required for
the execution of the business process may start by a value for
number of threads (e.g., thread count). Based on the thread
count, an overall time (e.g., total time) required to execute the
computations in the threads may be determined. The total
time required to execute the computations in the threads may
be based on parameters, such as, number of computations in
the thread, a time required or taken to create or generate the
thread, time required or taken for executing computations in
the thread, fixed additional processing time taken for each

10

15

20

25

30

35

40

45

50

55

60

65

4

thread, etc. The total time required to execute the computa-
tions associated with the business process is calculated, at
310. The value of thread count is iteratively incremented, at
320. Upon incrementing the thread count, the total time taken
to execute the computations for a corresponding value of the
thread count may be calculated. By iteratively incrementing
the thread count, the total time required to execute the com-
putations may be reduced. For each iteration, the thread count
is incremented and the total time required to execute the
computations in the business process is calculated. The cal-
culated total time and a corresponding value of the thread
count are compared for each iteration, at 330 (e.g., total time
required to execute the computations, thread count, etc., of
each iteration is compared with the corresponding values of
the previous iterations). Based on the comparison, the thread
optimization module, determines the optimal number of
threads for executing the business process, at 340.

In an embodiment, consider ‘c’ representing a time
required for each computation in a thread ‘t’, then an total
time required to create a thread, may be computed using the
equation:

T=("n)+(c* S Equation (1)

In an embodiment, ‘n’ represents the number of threads; ‘i’
represents number of calculations or computations in thread
t’; and ‘f” represents fixed additional processing time.

In an embodiment, when ‘n’ corresponds to a master thread
(e.g., process is executed on a single thread) and there are no
additional threads (e.g., child threads), then value of ‘n’ is ‘0’
(zero). Hence Equation (1) may be rewritten as:

T=(c*N)+f Equation (2)

In an embodiment, ‘N’ corresponds to ‘i’ which represents
the number of computations or calculations in the business
process, in Equation (2).

By way of example, consider optimizing the execution of
business process ‘A’. In an embodiment, the business process
‘A’ may be optimized by determining an optimal number of
threads required for its execution. The total time required for
executing the computations may be optimized or reduced by
iteratively increasing the value of thread count and calculat-
ing a corresponding total time required for the execution of
the computations in the business process. In each iteration,
the calculated total time required for the execution of the
computations may be compared with the corresponding value
of'total time required for the execution of the computations in
the previous iteration. The lowest value of the total time
required for the execution of the computations may be deter-
mined and the corresponding value of the thread count may be
determined. This determined value of the thread count may
correspond to the optimal number of threads required to
execute the computations, thereby optimizing the execution
of the business process ‘A’

In an embodiment, consider that business process ‘A’ may
be related to database operations. Consider that business pro-
cess ‘A’ executes on a master thread and does not include any
additional threads (e.g., child threads). Hence, the total time
required to execute the computations in business process ‘A’
may be calculated using Equation (2) and this value may
represent the maximum total time required to execute the
computations in business process ‘A’. The execution of the
business process ‘A’ may be optimized by iteratively incre-
menting the thread count and calculating the corresponding
value of the total time required for executing the computa-
tions.

By way of example, consider the number of computations,
‘N’, as equal to 100; the time required for each computation,

US 9,400,683 B2

5

‘c’, as equal to 8 ms (milliseconds); and the fixed additional
processing time required for each thread, ‘f” as equal to 89 ms.
On substituting these values in Equation (2), the maximum
total time “T” required for the execution of business process
‘A’ may be computed as, T=889 ms.

In an embodiment, consider that the thread count associ-
ated with the execution of the computations in business pro-
cess ‘A’ is iteratively incremented and the number of compu-
tations in each thread gets divided based on the number of
thread count. Table 1 exemplarily illustrates total time
required to execute business process ‘A’ based on an iterative
increment in the thread count and number of computations in
each thread.

TABLE 1
Thread Fixed Number of Compu- Total
Thread Creation Processing Computations tation Time
Index Count Time Time in each thread ~ Time (T
4] (m) (t ms) (f ms) (i) (cms) ms)
11 0 21 89 100 8 889
12 2 21 89 50 8 531
13 3 21 89 333 8 418.4
14 4 21 89 25 8 373
15 5 21 89 20 8 354
16 6 21 89 16.7 8 348.6
17 7 21 89 14.3 8 3504
18 8 21 89 12.5 8 357
19 9 21 89 11.1 8 366.8
110 10 21 89 10 8 377

In an embodiment, the columns of Table 1 includes
attributes, such as, “INDEX”, “THREAD COUNT”,
“THREAD CREATION TIME”, “FIXED PROCESSING
TIME”, “NUMBER OF COMPUTATIONS IN EACH
THREAD”, “COMPUTATION TIME”, “TOTAL TIME”,
etc. The rows of Table 1 includes corresponding attribute
values and the values in the column “TOTAL TIME” corre-
sponds to the total time required for executing the computa-
tions in business process ‘A’. Based on the attribute value of
“THREAD COUNT,” the attribute values of “TOTAL TIME”
may be computed using Equation (1) or Equation (2). By way
of example, the attribute value ‘0’ for “THREAD COUNT”
corresponds to execution of the computations of the business
process ‘A’ on the master thread. The attribute value ‘2, ‘3°,
‘4’, etc., corresponds to execution of the computations of the
business process ‘A’ on multiple child threads.

By way of illustration, Table 1 shows that the attribute
values in “TOTAL TIME” decreases or reduces, when the
attribute value of “THREAD COUNT” is iteratively incre-
mented. Based on an iterative increment (e.g., increment in
value by 1) in the attribute value of “THREAD COUNT” and
the corresponding number of computations, the total time
required to execute the computations in the business process
‘A’ may be calculated. In each iteration, the attribute value
“TOTAL TIME” may be compared with its corresponding
attribute value in the previous iteration. By way of example,
the attribute value “TOTAL TIME” for “INDEX” ‘12’ may be
compared with the attribute value “TOTAL TIME” for
“INDEX” I1” and so on.

In an embodiment, by iteratively incrementing the thread
count, calculating the total time required for executing the
computations, comparing the attribute values in “TOTAL
TIME” for each iteration and identifying the corresponding
thread count, the optimal number of threads for execution of
the business process ‘A’ may be determined. By way of
example, Table 1 shows that the attribute values in “TOTAL
TIME” keeps decreasing with an increment of the thread

15

30

40

45

50

55

6

count, that is, till the thread count reaches 6 (indicated by
indices 1 to 16); upon further incrementing the thread count,
the attribute value “TOTAL TIME” starts increasing (indi-
cated by indices 17 to 110). The attribute value “TOTAL
TIME” is lowest for the attribute value in “THREAD
COUNT” 6 and starts increasing when the attribute value in
“THREAD COUNT” is incremented. Hence, it may be deter-
mined that the optimal number of threads for executing busi-
ness process ‘A’ is 6. In an embodiment, the optimal number
of threads may correspond to a minimum total time required
to execute the computations in business process ‘A’. The
minimum total time (e.g., lowest total time) required to
execute the business process ‘A’ may be further reduced by
execution of inter-thread optimization model, thereby opti-
mizing the execution of business process ‘A’.

FIG. 4 is a flow diagram illustrating process 400 to opti-
mize an execution of a business process, according to an
embodiment. In an embodiment, an execution of business
process may be optimized by an execution of an inter-thread
computations optimization model. The inter-thread compu-
tations optimization model may iteratively distribute or real-
locate computations between the optimal number of threads
(e.g., determined by thread optimization model) that is asso-
ciated with the business process and running concurrently in
parallel. The execution of process 400 provides a mechanism
to iteratively distribute or reallocate computations between
the optimal number of threads executing the business process
A

In an embodiment, by iteratively reallocating the compu-
tations between the determined optimal number of threads,
the execution of the business process ‘A’ may be optimized.
As explained previously, the optimal number of threads
required for executing the computations of business process
‘A’ may be determined by thread optimization model. Each
thread may be created or generated serially. The execution of
business process ‘A’ may be further optimized by iteratively
distributing or reallocating the computations between the
optimal number of threads. In an embodiment, the computa-
tions in each thread from the optimal number of threads may
be independent and reallocating the computations of one
thread may not interrupt its own execution. The time required
for executing each computation in each thread may be less
than the time required for creating the thread itself. To real-
locate the computations between the optimal number of
threads, a time required to create a thread (e.g., a first thread)
and a total time required to execute computations in the first
thread is determined, at 410. Upon such determination, the
computations in the first thread may be partitioned or divided
into time slots. Each time slot may correspond to the time
taken to create the thread.

In an embodiment, based on the time slots (e.g., partitions)
created in the first thread, the computations in the optimal
number of threads are partitioned into time slots, at 420. The
time slot in each thread may be equal to the time taken to
create the thread. In an embodiment, upon creating partitions
in the optimal number of threads, a total time required to
execute the computations in the last thread, may be deter-
mined. The total time required to execute the computations in
the first thread, a second thread, a third thread, etc., may be
less than the total time required to execute the computations
in the last thread (e.g., in the optimal number of threads, the
threads may be referred to as first thread, second thread, last
thread, etc.).

In an embodiment, the execution of the business process
‘A’ is completed when the computations in the last thread is
completed. In an embodiment, the execution of the computa-
tions in the first thread, second thread, etc., may be completed

US 9,400,683 B2

7

before the creation of the last thread (e.g., based on number of
computations and time taken for execution of each computa-
tion). Since execution of the computations in the last thread
completes the execution of the business process ‘A’, there
may be free time slots available between the first thread and a
second last thread. An iterative determination of such avail-
able free time slots in the optimal number of threads is made
based on the total time required to execute the computations
in the last thread, at 430. The availability of free time slots
may be iteratively determined by parsing the threads and
identify or determine the time taken to complete the execution
of'the computations. Upon such determination, the computa-
tions from the last thread may be reallocated to the available
free time slots in the optimal number of threads to optimize
the execution of business process ‘A’, at 440. Such realloca-
tion may reduce the total time required to execute the com-
putations associated with the business process ‘A’.

In an embodiment, when all the computations of the last
thread are iteratively reallocated between the first thread and
the second last thread, the last thread may be released from
business process ‘A’. The mechanism to determine the avail-
able free time slots in the optimal number of threads and
reallocate or distribute of the computations between the opti-
mal number of threads may continue iteratively until the all
the computations that are waiting to be reallocated are dis-
tributed between the optimal number of threads.

In an embodiment, when an availability of a free time slot
is determined in higher order threads (e.g., first thread, second
thread, etc.), then the computations in lower order threads
(e.g., last thread, second last thread, etc.) may be iteratively
distributed or reallocated between the higher order threads.
Since the time taken for executing computations in the higher
order threads may greater than that in the lower order threads,
reallocation or distribution of the computations reduces the
total time required to complete execution, thereby optimizing
the execution of the business process.

FIG. 5 is a block diagram 500 illustrating an execution of a
business process, according to an embodiment. By way of
illustration, FIG. 5 shows an execution of a business process
‘A’ on an optimal number of threads. As explained previously,
the optimal number of threads required to execute the com-
putations of the business process ‘A’ may be determined by an
execution of a thread optimization model. The X-axis repre-
sents the Time (in milliseconds) and Y-axis represents the
thread number (e.g., Thread No). FIG. 5 shows the execution
of business process ‘A’ on 6 threads (e.g., representing opti-
mal number of threads) that are created serially. By way of
example, each thread may include 5 computations (e.g., com-
putations in thread 1 are indicated by “1.1°, “1.2°, ‘1.3”, “1.4°,
1.5”; computations in thread 2 are indicated by ‘2.1°, ‘2.2’,
€2.3%, 2.4, °2.5°, and so on). The time taken to create each
thread is 10 ms and each thread may be partitioned into time
slots of 10 ms, which represents the time taken for executing
a computation in the thread (e.g., each time slot may corre-
spond to the time taken to create thread, which is equal to the
time taken to execute a computation in the thread). By way of
illustration, FI1G. 5 shows that the total time taken to complete
execution of the business process is 110 ms, which corre-
sponds to the lime taken by the last thread (e.g., thread 6) to
complete executing computations. The threads numbered 1,
2, 3, etc., may complete executing computations in less than
110 ms. By way of example, the time taken to complete
execution of computations in each thread is approximately 60
ms (e.g., for thread numbered 1, the time taken to complete
execution of computations is 0 ms to 60 ms), which includes
the time taken to create the thread (represented by solid block
at the beginning of the thread in FIG. 5) and the execution of

20

25

35

40

45

50

8

the computations in the thread (represented by shaded blocks
in FIG. 5). By way of illustration, the first thread (e.g., thread
1) completes execution at 60 ms; the second thread (e.g.,
thread 2) completes execution at 70 ms and so on. The blocks
or slots that correspond to time taken to create the thread and
execute the computations are indicated by legend 502.

FIG. 6 is a block diagram 600 illustrating an execution of a
business process, according to an embodiment. By way of
illustration, FIG. 6 shows the execution of business process
‘A’ on 6 threads. The X-axis represents the Time (in millisec-
onds) and Y-axis represents the thread number (e.g., Thread
No). As explained above, the maximum total time required to
complete the execution of business process ‘A’ may be deter-
mined by identifying the time required for executing the
computations in the last thread, which is 110 ms, as shown in
FIG. 6. By way of illustration, FIG. 6 also shows that the first
thread completes executing computations at 60 ms, the sec-
ond thread at 70 ms, and so on. From the remaining optimal
number of threads (e.g., in threads 1, 2, 3, 4, 5), the availabil-
ity of free time slots may be determined. By way of example,
FIG. 6 shows availability of 5 free time slots in thread 1
indicated by ‘A’, ‘B’, ‘D’, ‘G’, and ‘K’; availability of 4 free
time slots in thread 2 indicated by ‘C’, ‘E’; ‘H’, and ‘I, and
so on. Legend 602 in FIG. 6 shows the thread creation, which
corresponds to the time taken or required to create a thread;
computations, which corresponds to the time taken to execute
acomputation; available free time slots, which corresponds to
the number of available free time slots.

Inanembodiment, Table 2 exemplarily illustrates the avail-
able free time slots in the threads for execution of the business
process.

TABLE 2

Thread Available free time slots Indicator

6 0 —

5 1 ‘O’

4 2 TN

3 3 ‘B, T, M’

2 4 ‘C, B, H, L

1 5 ‘A’,‘B’, ‘D, ‘G, ‘'K’
Total 15

By way of illustration, Table 2 shows the “AVAILABLE
FREE TIME SLOTS”, corresponding “THREAD” and
“INDICATOR” information. Table 2 is generated based on
available free time slots in each thread. In an embodiment,
based on the time taken for executing computations in the last
thread (e.g., thread 6), the availability of free time slots in the
optimal number of threads may be iteratively determined. In
the example above, it may be iteratively determined that there
are a total of 15 free time slots available between the first
thread (e.g., thread 1) and the second last thread (e.g., thread
5). Upon such determination, the computations of the last
thread (e.g., thread 6) may be distributed or reallocated in the
available free time slots between the first thread (e.g., thread
1) and the second last thread (e.g., thread 5) by executing
inter-thread computations optimization model.

In an embodiment, the number of available free time slots
is based on the optimal number of threads required for execut-
ing the computations in the business process. For instance, if
k’ is the number of optimal number of threads required for
executing the computations in the business process, then the
number of available free time slots may be determined by
computing summation of free time slots between the first

US 9,400,683 B2

9
thread and (k-1) threads. In general, sum of first ‘n’ natural
integers ‘S’ may be computed using the formula:

B nx(n+1)
B 2

Equation (3)

Inanembodiment, if ‘a’is the number of available free time
slots, then substituting ‘n’ with (k-1) in Equation (3), yields:

_kxk-1)
~T 2

Equation (4)

FIG. 7 is a block diagram 700 illustrating an execution of a
business process, according to an embodiment. By way of
illustration, FIG. 7 shows reallocation or distribution of com-
putations of the last thread (e.g., thread 6) between the first
thread (e.g., thread 1) and the second thread (e.g., thread 2) by
an execution of inter-thread computations optimization
model. The X-axis represents the Time (in milliseconds) and
Y-axis represents the thread number (e.g., Thread No). By
way of illustration, FIG. 7 shows that the computations of the
lastthread (e.g., thread 6) indicated by “6.1°, °6.2°,6.3°, ‘6.4’
and ‘6.5 are distributed or reallocated between the available
free time slots in thread 1 and the thread 2 (e.g., computation
of thread 6 indicated by ‘6.1 gets reallocated in thread 1, at
704; computation of thread 6 indicated ‘6.2’ gets reallocated
in thread 1, at 706; computation of thread 6 indicated by ‘6.4’
gets reallocated in thread 1, at 708; computation of thread 6
indicated by ‘6.3’ gets reallocated in thread 2, at 706; com-
putation of thread 6 indicated by ‘6.5” gets reallocated in
thread 2, at 708, etc.) In an embodiment, since all the com-
putations in thread 6 are reallocated, thread 6 may be released
from participating in the execution of the business process.
The reallocation of the computations from thread 6 reduces
the total time required for the execution of business process to
100 ms. Hence the total time required for the execution of
business process is decreased by 10 ms and the optimal num-
ber of threads is reduced by 1 thread, thereby optimizing the
execution of the business process by using 5 threads.

In an embodiment, upon releasing the last thread (e.g.;
thread 6) from participating in the execution of the business
process, it may be determined that the total number of free
time slots that are available is reduced to 10. By way of
illustration, FIG. 7 shows the time slots indicated by ‘K’, ‘L,
‘M’, ‘N’ and O’ are lost (e.g., lost time slots) as the result of
releasing thread 6, thereby reducing the number of available
free time slots to 10. In an embodiment, any further realloca-
tion of the computations may result in releasing more threads
(e.g., the second last thread, thread 5) from participating in the
execution of the business process. In such a scenario, the
inter-thread computations optimization model may deter-
mine that reallocations or distribution of the computations in
the optimal number of threads may not be possible and the
mechanism to reallocate computations stops. Legend 702 in
FIG. 7 shows the thread creation, which corresponds to the
time taken or required to create a thread; computations, which
corresponds to the time taken to execute a computation; real-
located computations, which corresponds to the computa-
tions that are reallocated; available free time slots, which
corresponds to the number of available free time slots;
released thread, which corresponds to the thread that is
released from participation in the execution of the business
process; and lost time slots, which corresponds to the time
slots that are lost as the result of releasing thread.

10

15

20

25

30

35

40

45

50

55

60

65

10

In an embodiment, when the computations in the second
last thread (e.g., thread 5) are reallocated or distributed
among the remaining available free time slots (e.g., between
thread 2 and thread 4, indicated by ‘G’, ‘H’, ‘F’, ‘I” and ‘J*)
and the second last thread (e.g., thread 5) is released from
participation in the execution of business process, it may
result in losing 4 more time slots (e.g., when thread 5 is
released from participating in the business process, time slots
indicated by ‘G’, ‘H’, ‘I” and ‘J” may be lost). This may result
in loss of the computations in the remaining optimal number
of threads (e.g., between thread 1 and thread 4). Hence the
process of iteratively distributing or reallocating the compu-
tations between the optimal number of threads may be
stopped.

FIG. 8 is a block diagram 800 illustrating an execution of a
business process, according to an embodiment. By way of
illustration, FIG. 8 shows partial reallocation or distribution
of computations in the optimal number of threads. The X-axis
represents the Time (in milliseconds) and Y-axis represents
the thread number (e.g., Thread No). In an embodiment, the
computations of the second last thread (e.g., thread 5) indi-
cated by ‘5.5’ may be partially reallocated (e.g., computation
of'thread 5 indicated by ‘5.5, at 804 gets reallocated thread 3,
at 806). Upon partial reallocation of the computation 5.5,
the times slots at 808 indicated by ‘G’, ‘H’, ‘I’, ‘J” and (e.g.,
5.5” at 804) may be released from participating in the execu-
tion of the business process. In such a scenario, the total time
required for the execution of the business process may further
be reduced by 10 ms, thereby optimizing the execution of the
business process. Legend 802 in FIG. 8 shows the thread
creation, that corresponds to the time taken or required to
create a thread; computations, that corresponds to the time
taken to execute a computation; reallocated computations,
that corresponds to the computations that are reallocated;
available free time slots, that corresponds to the number of
available free time slots; released thread, that corresponds to
the thread that is released from participation in the execution
of the business process; and lost time slots, that corresponds
to the time slots that are lost as the result of releasing thread.

By way of example, consider a scenario that the business
process is executed using static or fixed number of threads
(e.g., thread count of n=1; n=2000 and n=5000). For instance,
consider that number of computations in each thread, ‘1’ is 8;
fixed additional processing time, ‘f”is 89 ms and time taken to
create the thread, ‘t’ is 21 ms; and memory used by each
thread is about 500 KB (kilobytes), then the total time
required for the execution of business process may be com-
puted using Equation (1) and Equation (2), as follows:

Case 1:

When number of threads, n=1, the total time required for

executing the business process may be computed using
Equation (2), as

T = (1000%8) + 89
= 8.089ms

Memory required for executing computations in 1 thread is
500 KB

Total memory required = (500 1)
=500KB

US 9,400,683 B2

11
Case 2:
When number of threads, n=2000, the total time required
for executing the business process may be computed
using Equation (1), as

T = (2000%21) + (500 «8) + 89
=46.089ms

Memory required for executing computations in 1 thread is
500 KB

Total memory required = (500 %2000)
=976.56 MB

Case 3:

When number of threads, n=5000, the total time required
for executing the business process may be computed
using Equation (1), as

T = (5000%21) + (200 «8) + 89
= 106.689 seconds

Memory required for executing computations in 1 thread is
500 KB

Total memory required = (500 % 5000)
=2441.4MB

By way of example, consider Table 2 exemplarily illustrat-
ing calculating total time required to execute business process
using the thread optimization model, where the thread count
it iteratively incremented.

TABLE 2
Thread Fixed
Crea- Proc- Number of Compu- Total
Thread tion essing Computations tation Time
Index Count Time Time ineachthread Time (T
4] (m) (tms) (fms) (i) (c ms) ms)
11 610 21 89 1639.344262 8 26013.75
12 611 21 89 1636.661211 8 26013.29
13 612 21 89 1633.986928 8 26012.9
14 613 21 89 1631.32137 8 26012.57
15 614 21 89 1628.664495 8 26012.32
16 615 21 89 1626.01626 8 26012.13
17 616 21 89 1623.376623 8 26012.01
18 617 21 89 1620.745543 8 26011.96
19 618 21 89 1618.122977 8 26011.98
110 619 21 89 1615.508885 8 26012.07
111 620 21 89 1612.903226 8 26012.23
112 621 21 89 1610.305958 8 26012.45
113 622 21 89 1607.717042 8 26012.74
114 623 21 89 1605.136437 8 26013.09
115 624 21 89 1602.564103 8 26013.51
116 625 21 89 1600 8 26014

According to Table 2, the attribute values in “TOTAL
TIME” decreases or reduces when the attribute value of
“THREAD COUNT” is iteratively incremented by ‘1°, and is
based on the number of computations. The total time required
to execute the computations in the business process may be
calculated using Equation (1) and Equation (2). As explained

10

15

25

30

35

40

50

55

60

65

12

previously, for each iteration, the attribute value “TOTAL
TIME” may be compared with its corresponding attribute
value in the previous iteration and the optimal number of
threads for the execution of business process may be deter-
mined.

In an embodiment, by the execution of thread optimization
model, it may be determined that the optimal number of
threads for executing the business process may be determined
as 617 (e.g., corresponding to lowest value of “TOTAL
TIME”, indicated by “INDEX” I8) and the corresponding
total time for executing the computations as 26011.96 ms. For
this value of thread count, the total memory required for
executing computations may be computed as:

Memory required for executing computations in 1 thread is
500 KB

Total memory required = (500 «617)
=301.27MB (Megabytes)

In an embodiment, the execution of the business process
may further be optimized by executing the inter-thread com-
putations optimization model, which iteratively distributes or
reallocates the computations in the optimal number of
threads. By way of example, Table 3 exemplarily illustrates
execution of inter-thread computations optimization model
that may iteratively reduce the thread count by iteratively
reallocating or distributing the computations between the
optimal number of threads required for executing the business
process.

TABLE 3

Number Optimal Compu- Con-

of number Available tations tinue
threads of free time Reallocated — awaited for Iter-
Index reduced threads slots computations Reallocation ation
I1 161 617 103740 99176 4564 Yes
12 162 617 103285 99792 3493 Yes
13 163 617 102831 100408 2423 Yes
14 164 617 102378 101024 1354 Yes
15 165 617 101926 101640 286 Yes
16 166 617 101475 102256 -781 No
Table 3 shows columns representing attributes, such as,
“INDEX”, “NUMBER OF THREADS REDUCED”,

“OPTIMAL NUMBER OF THREADS”, “AVAILABLE
FREE TIME SLOTS”, “REALLOCATED COMPUTA-
TIONS”, “COMPUTATIONS AWAITED FOR REALLO-
CATION”, “CONTINUE ITERATION”, etc. The attribute
values of “NUMBER OF THREADS REDUCED” are itera-
tively incremented and the corresponding attribute values of
“AVAILABLE FREE TIME SLOTS”, “REALLOCATED
COMPUTATIONS”, and “COMPUTATIONS AWAITED
FOR REALLOCATION” are determined. It may be noted
that the attribute values of “COMPUTATIONS AWAITED
FOR REALLOCATION” iteratively decrease in value, with
an increment in the value of “NUMBER OF THREADS
REDUCED” (e.g., corresponding to indices 11 to I5). Based
on the value of “COMPUTATIONS AWAITED FOR REAL-
LOCATION”, the reduced thread count (e.g., “NUMBER OF
THREADS REDUCED”) may be determined. The iterations
may be stopped, when there are no more computations left for
reallocation. By way of example, Table 3 shows that value of
“COMPUTATIONS AWAITED FOR REALLOCATION”
becomes negative and it may be determined that the value of
thread count (e.g., maximum number of threads) that may be
reduced is 165 (e.g., corresponding to “INDEX” I5).

US 9,400,683 B2

13

In an embodiment, upon determining a value that corre-
sponds to the maximum number of threads that may be
reduced, the thread count for executing the business process
may be determined. For instance, the value of maximum
number of threads that may be reduced may be subtracted
from the optimal number of threads required for the execution
of the business process. Therefore, the number of threads
required for executing the business process may be computed
to be equal to a difference between the optimal number of
threads required for executing the business process and the
number of threads reduced, represented by:

(optimal number of threads Equation (5)

for executing the business process) —

(number of threads reduced) =617 — 165 =442

In an embodiment, using the value of thread count obtained
from Equation (5), the total time required and the memory
utilized for executing the business process may be computed
as follows:

When number of threads, n=442, the total time required for

executing the business process may be computed using
Equation (1), as

T = (5000 21) + (1620.746 % 8) + 89
=22.33698 ms

Memory required for executing computations in 1 thread is
500 KB

Total memory required = (442 % 5000)
=215.82 MB

In an embodiment, by executing the thread optimization
model and inter-thread computations optimization model, the
number of threads required for executing the business process
may be reduced. The execution of the above models, not only
optimizes the execution of the business process, but also
reduces the computing resources utilized.

Some embodiments may include the above-described
methods being written as one or more software components.
These components, and the functionality associated with
each, may be used by client, server, distributed, or peer com-
puter systems. These components may be written in a com-
puter language corresponding to one or more programming
languages such as, functional, declarative, procedural,
object-oriented, lower level languages and the like. They may
be linked to other components via various application pro-
gramming interfaces and then compiled into one complete
application for a server or a client. Alternatively, the compo-
nents may be implemented in server and client applications.
Further, these components may be linked together via various
distributed programming protocols. Some example embodi-
ments may include remote procedure calls being used to
implement one or more of these components across a distrib-
uted programming environment. For example, a logic level
may reside on a first computer system that is remotely located
from a second computer system containing an interface level
(e.g., a graphical user interface). These first and second com-
puter systems can be configured in a server-client, peer-to-

15

30

35

40

45

14

peer, or some other configuration. The clients can vary in
complexity from mobile and handheld devices, to thin clients
and on to thick clients or even other servers.

The above-illustrated software components are tangibly
stored on a computer readable storage medium as instruc-
tions. The term “computer readable storage medium” should
be taken to include a single medium or multiple media that
stores one or more sets of instructions. The term “computer
readable storage medium” should be taken to include any
physical article that is capable of undergoing a set of physical
changes to physically store, encode, or otherwise carry a set
of instructions for execution by a computer system which
causes the computer system to perform any of the methods or
process steps described, represented, or illustrated herein. A
computer readable storage medium may be a non-transitory
computer readable storage medium. Examples of a non-tran-
sitory computer readable storage media include, but are not
limited to: magnetic media, such as hard disks, floppy disks,
and magnetic tape; optical media such as CD-ROMs, DVDs
and holographic devices; magneto-optical media; and hard-
ware devices that are specially configured to store and
execute, such as application-specific integrated circuits
(“ASICs”), programmable logic devices (“PLDs”) and ROM
and RAM devices. Examples of computer readable instruc-
tions include machine code, such as produced by a compiler,
and files containing higher-level code that are executed by a
computer using an interpreter. For example, an embodiment
may be implemented using Java, C++, or other object-ori-
ented programming language and development tools.
Another embodiment may be implemented in hard-wired
circuitry in place of, or in combination with machine readable
software instructions.

FIG. 91s ablock diagram of an exemplary computer system
900, according to an embodiment. Computer system 900
includes processor 905 that executes software instructions or
code stored on computer readable storage medium 955 to
perform the above-illustrated methods. Processor 905 can
include a plurality of cores. Computer system 900 includes
media reader 940 to read the instructions from computer
readable storage medium 955 and store the instructions in
storage 910 or in random access memory (RAM) 915. Stor-
age 910 provides a large space for keeping static data where at
least some instructions could be stored for later execution.
According to some embodiments, such as some in-memory
computing system embodiments, RAM 915 can have suffi-
cient storage capacity to store much of the data required for
processing in RAM 915 instead of in storage 910. In some
embodiments, all of the data required for processing may be
stored in RAM 915. The stored instructions may be further
compiled to generate other representations of the instructions
and dynamically stored in RAM 915. Processor 905 reads
instructions from RAM 915 and performs actions as
instructed. According to one embodiment, computer system
500 further includes output device 925 (e.g., a display) to
provide at least some of the results of the execution as output
including, but not limited to, visual information to users and
input device 930 to provide a user or another device with
means for entering data and/or otherwise interact with com-
puter system 900. Each of these output devices 925 and input
devices 930 could be joined by one or more additional periph-
erals to further expand the capabilities of computer system
900. Network communicator 935 may be provided to connect
computer system 900 to network 950 and in turn to other
devices connected to network 950 including other clients,
servers, data stores, and interfaces, for instance. The modules
of computer system 900 are interconnected via bus 945. Com-
puter system 900 includes a data source interface 920 to

US 9,400,683 B2

15

access data source 960. Data source 960 can be accessed via
one or more abstraction layers implemented in hardware or
software. For example, data source 960 may be accessed by
network 950. In some embodiments data source 960 may be
accessed via an abstraction layer, such as, a semantic layer.

A data source is an information resource. Data sources
include sources of data that enable data storage and retrieval.
Data sources may include databases, such as, relational,
transactional, hierarchical, multi-dimensional (e.g., OLAP),
object oriented databases, and the like. Further data sources
include tabular data (e.g., spreadsheets, delimited text files),
data tagged with a markup language (e.g., XML data), trans-
actional data, unstructured data (e.g., text files, screen scrap-
ings), hierarchical data (e.g., data in a file system, XML data),
files, a plurality of reports, and any other data source acces-
sible through an established protocol, such as, Open Data
Base Connectivity (ODBC), produced by an underlying soft-
ware system (e.g., ERP system), and the like. Data sources
may also include a data source where the data is not tangibly
stored or otherwise ephemeral such as data streams, broadcast
data, and the like. These data sources can include associated
data foundations, semantic layers, management systems,
security systems and so on.

In the above description, numerous specific details are set
forth to provide a thorough understanding of embodiments.
One skilled in the relevant art will recognize, however that the
embodiments can be practiced without one or more of the
specific details or with other methods, components, tech-
niques, etc. In other instances, well-known operations or
structures are not shown or described in details.

Although the processes illustrated and described herein
include series of steps, it will be appreciated that the different
embodiments are not limited by the illustrated ordering of
steps, as some steps may occur in different orders, some
concurrently with other steps apart from that shown and
described herein. In addition, not all illustrated steps may be
required to implement a methodology in accordance with the
one or more embodiments. Moreover, it will be appreciated
that the processes may be implemented in association with
the apparatus and systems illustrated and described herein as
well as in association with other systems not illustrated.

The above descriptions and illustrations of embodiments,
including what is described in the Abstract, is not intended to
be exhaustive or to limit the one or more embodiments to the
precise forms disclosed. While specific embodiments of, and
examples for, the one or more embodiments are described
herein for illustrative purposes, various equivalent modifica-
tions are possible within the scope, as those skilled in the
relevant art will recognize. These modifications can be made
in light of the above detailed description. Rather, the scope is
to be determined by the following claims, which are to be
interpreted in accordance with established doctrines of claim
construction.

What is claimed is:
1. A computer-implemented method to optimize an execu-
tion of a business process, comprising:

receiving a request to execute a business process;

upon receiving the request, determining, by a processor of
the computer, an optimal number of threads for execut-
ing the business process by a thread optimization model;

iteratively distributing, by the processor of the computer,
one or more computations in the determined optimal
number of threads by an inter-thread optimization
model, comprising:

15

20

25

30

35

40

45

50

60

65

16

determining a time required to generate a first thread
from the optimal number of threads, and a total time
required to execute one or more computations in the
generated first thread; and

partitioning the one or more computations in the gener-
ated first thread into one or more time slots, wherein
the one or more time slots are at least equal to the time
required to generate the first thread; and

based on the determined optimal number of threads and the

iterative distribution of the one or more computations,
optimizing, by the processor of the computer, the execu-
tion of the business process.

2. The computer-implemented method of claim 1, wherein
determining the optimal number of threads for executing the
business process by the thread optimization model, com-
prises:

calculating, by the processor of the computer, a total time

required to execute one or more computations associ-
ated with the business process by iteratively increment-
ing a value of a thread count for executing the business
process; and

for each iteration, comparing, by the processor of the com-

puter, the calculated total time and a corresponding
value of the thread count to determine the optimal num-
ber of threads for executing the business process.
3. The computer-implemented method of claim 2, wherein
the calculated total time corresponds to a lowest total time
required for executing the one or more computations associ-
ated with the business process.
4. The computer-implemented method of claim 1, wherein
iteratively distributing the one or more computations in the
determined optimal number of threads by inter-thread opti-
mization model, further comprises:
based on a total time required to execute the one or more
computations in a last thread, iteratively determining, by
the processor of the computer, one or more available free
time slots in the optimal number of threads; and

reallocating, by the processor of the computer, the one or
more computations from the last thread between the one
or more available free time slots in the optimal number
of threads, wherein the reallocation optimizes the execu-
tion of the business process.

5. The computer-implemented method of claim 1, further
comprising: releasing the last thread, by the processor of the
computer, from the optimal number of threads upon deter-
mining that the one or more computations corresponding to
the last thread are iteratively distributed between a remaining
optimal number of threads.

6. The computer-implemented method of claim 1, wherein
the total time required to execute the one or more computa-
tions is based on the one or more computations in one or more
threads corresponding to the determined optimal number of
threads.

7. A computer system to optimize an execution of a busi-
ness process, comprising:

a processor; and

one or more memory devices communicatively coupled

with the processor and the one or more memory devices

storing instructions to:

receive a request to execute a business process;

determine an optimal number of threads for executing
the business process by a thread optimization model;
and

iteratively distribute one or more computations in the deter-

mined optimal number of threads by an inter-thread
optimization model, comprising:

US 9,400,683 B2

17

determining a time required to generate a first thread
from the optimal number of threads, and a total time
required to execute one or more computations in the
generated first thread; and

partitioning the one or more computations in the gener-
ated first thread into one or more time slots, wherein
the one or more time slots are at least equal to the time
required to generate the first thread; and

based on the determined optimal number of threads and
the iterative distribution of the one or more computa-
tions, optimize the execution of the business process.

8. The computer system of claim 7, wherein determining
the optimal number of threads for executing the business
process by the thread optimization model, comprises:

calculating a total time required to execute one or more

computations associated with the business process by
iteratively incrementing a value of a thread count for
executing the business process; and

for each iteration, comparing the calculated total time and

a corresponding value of the thread count to determine
the optimal number of threads for executing the business
process.

9. The computer system of claim 8, wherein the calculated
total time corresponds to a lowest total time required for
executing the one or more computations associated with the
business process.

10. The computer system of claim 7, wherein iteratively
distributing the one or more computations in the determined
optimal number of threads by inter-thread optimization
model, comprises:

determining a time required to generate a first thread from

the optimal number of threads, and a total time required
to execute the one or more computations in the generated
first thread; and

partitioning the one or more computations in the optimal

number of threads into one or more time slots, wherein
the one or more time slots are equal to the time required
to generate the first thread.

11. The computer system of claim 10, further comprising:
releasing the last thread from the optimal number of threads
upon determining that the one or more computations corre-
sponding to the last thread are iteratively distributed between
a remaining optimal number of threads.

12. The computer system of claim 7, wherein the total time
required to execute the one or more computations is based on
the one or more computations in one or more threads corre-
sponding to the determined optimal number of threads.

13. A non-transitory computer readable storage medium
tangibly storing instructions, which when executed by a com-
puter, cause the computer to execute operations comprising:

18

receive a request to execute a business process;

determine an optimal number of threads for executing the
business process by a thread optimization model; and

iteratively distribute one or more computations in the deter-

5 mined optimal number of threads by an inter-thread

optimization model, comprising:

determining a time required to generate a first thread
from the optimal number of threads, and a total time
required to execute one or more computations in the
generated first thread; and

partitioning the one or more computations in the gener-
ated first thread into one or more time slots, wherein
the one or more time slots are at least equal to the time
required to generate the first thread; and

based on the determined optimal number of threads and the

iterative distribution of the one or more computations,
optimize the execution of the business process.

14. The non-transitory computer readable storage medium
of claim 13, wherein determining the optimal number of
threads for executing the business process by the thread opti-
mization model, comprises:

calculate a total time required to execute one or more

computations associated with the business process by
iteratively incrementing a value of a thread count for
executing the business process; and

for each iteration, compare the calculated total time and a

corresponding value of the thread count to determine the
optimal number of threads for executing the business
process.

15. The non-transitory computer readable storage medium
of claim 14, wherein the calculated total time corresponds to
a lowest total time for executing the one or more computa-
tions associated with the business process.

16. The non-transitory computer readable storage medium
of claim 13, wherein iteratively distributing the one or more
computations in the determined optimal number of threads by
inter-thread optimization model, comprises:

determine a time required to generate a first thread from the

optimal number of threads, and a total time required to
execute the one or more computations in the generated
first thread; and

partition the one or more computations in the optimal num-

ber of threads into one or more time slots, wherein the
one or more time slots are equal to the time required to
generate the first thread.

17. The non-transitory computer readable storage medium
of claim 16, further storing instructions, which when
executed by a computer, cause the computer to execute opera-
tions comprising: release the last thread from the optimal
number of threads upon determining that the one or more
computations corresponding to the last thread are iteratively
distributed between a remaining optimal number of threads.

20

25

#* #* #* #* #*

